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I. INTRODUCTION 

The flow of a viscous fluid past a porous particle has been studied by several investigators in 
widely varying fields. The areas of application range from the flow over a packed bed to the 
modeling of polymer molecules as porous particles. These problems differ from the classic 
problem of flow through a porous medium, because the bodies are of finite extent and are 
bordered by regions of pure fluid. To calculate the fluid velocity inside the porous body, we 
require an equation which accurately models the flow in the boundary region near the surface 
and is consistent with Darcy's law far from the surface in the interior of the body. A 
modification of Darcy's law which meets these requirements for many materials was proposed 
by Brinkman (1947) in the form: 

V. d, --- - V# +~V2fi = ~ (~ -  ue), [1] 

where fi is the volume average velocity, u P the particle velocity, # the interstitial average 
pressure and dr is defined by 

[ a(i i c91_1."~ 
#i i  =- - PSii + ~ i - -  + :-:U'l 

\ a x  i axe~  

The permeability k is a physical constant determined by the porous material. 
This equation is based on Stokes' equation for low Reynolds number flow with the addition 

of a drag force ~ (fi-  u e) to account for the local resistance due to the presence of the particle. 

Debye & Bueche (1948) followed a similar line of reasoning and arrived at Brinkman's equation 
independently. Although [1] was originally derived from heuristic arguments, it has since 
received theoretical justification from numerous authors (see Howells 1974). The equation has 
been verified experimentally for some specific materials, but it has its limitations and cannot be 
used indiscriminately. A summary of the experimental work is included in the appendix to this 
paper together with a crude criterion for assessing the validity of the model for a given material. 

An alternative approach to the subject is to employ Darcy's law, but to allow discontinuities 
in the fluid velocity at the surface of the body. This idea was suggested by Beavers & Joseph 
(1967) who proposed an expression for this "slip" boundary condition and found reasonable 
agreement with experiments. Saffman (1971) and others have offered theoretical confirmation 
for this approach. In practice, the Brinkman equation appears more useful, because it 
incorporates a more fundamental analysis and embodies a well-defined stress tensor. 
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Felderhof & Deutch (1975 a, b) and Felderhof (1975 a, b) used Brinkman's equation to model 
the hydrodynamic interaction of polymer molecules. In that series of papers, they derived [1], 

constructed a formal solution in terms of an integral equation and outlined methods for 
calculating physical properties of the polymers, such as the translational friction and the 
intrinsic viscosity for dilute suspensions of spherical molecules. 

In the present note, we summarize some previous work on porous media and extend to this 
subject a few of the well-known results for flow past an impermeable particle--a problem 
which has been studied extensively in the past. Although these results are easily derived from 
basic principles, many have not been cited in the literature on porous media and have not been 
exploited in the analysis of problems in this area. Finally, we derive certain asymptotic results 
for small and large permeability which greatly simplify the analysis for the case of particles 
with arbitrary geometry. 

II. STATEMENT OF THE PROBLEM 

We consider the problem of a porous particle moving through a viscous fluid with velocity 
u e = U e + II e × x where U e and 1~ e are constants. The undisturbed velocity field is u ~. We 

assume that the Reynolds number for the motion is small, and hence that the flow outside the 
particle is governed by Stokes' equation: 

V ' o  =- - V p  + / ~ V 2 u  = 0 [2] 

while inside the particle, [1] applies. In addition, u is everywhere divergence free. For 
convenience, we have dropped the ^ notation with the understanding the u and p refer to 
averaged quantities in the interior of the particle and their actual values exterior to the particle. 

The boundary conditions for the equations are the continuity of velocity u and of the surface 
force f = {r. n across the particle surface, where n is the unit normal to the surface. Finally, we 
require that u-~ u S as x -~ ~. 

This completes the statement of the problem. 

III. INTEGRAL EQUATIONS 

There are several ways in which solutions of the system of Eq. [1] and [2] may be 
calculated. One of the most convenient is to work with an integral equation for the velocity and 
the surface force. In following this approach, we use the appropriate Green's functions for [1] 
and [2] to construct integral solutions valid in their respective domains. The boundary condition 
for u and f then provides an integral equation extending over the surface of the particle. 

The integral solution of [2] in the region exterior to the particle is well known. In particular, 
taking the limit as the point x approaches the surface, we have 

½ui(x) : u~(x)+ Js ~ f  K%k(x - y)uj(y)nKdSy - fs  P Loo(X - y)fi(y)dSyy [3] 

where 

K%(x)=4~xixjxK 1 ( ~  2 xix~.~ 
r 5 , L o l s ( x ) = ~  + r3 ] .  [4] 

(See Ladyzhenskaya 1963, pp. 54-56). 
In the interior of the particle, we employ the Green's functions for Brinkman's equation as 
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found by Howells (1974). Proceeding as before, we take the limit as x approaches the surface 

and find: 

}Ui(X) = - -  ,Is~P Kiik (x -y )u i (y )nrdSy  + Js f P Li i (x-Y) f i (y)dSy '  [5] 

where 
Kisk(x) - e-'~r(1 + ar) [ 8ikXj + ,SijXk 2XiXiX k ] + 1 XiSsk 

4 zr L 47r r 3 r3 - r5 J 

e-~r(6 + 6ar + 2a2r 2) - 6 [ SikXj + 8iiXk + ~jkXi 5XiXiXk ] -+ 
4Ira 2 [ r 5 - r 7 J 

and 

L,,(x)= e-~r[~-x~x~]+ e-~r(l+ar)-I f~ 3x,xj] 
4~r L r r 3 J 47rp, a 2 L r 3 - r 5 J '  

[6] 

1 

In view of the continuity of the velocity u and the surface force f, [3] and [5] constitute a 
system of integral equations for u and f. In principle, it is possible to obtain a numerical solution 
of these equations using a method analogous to that employed by Youngren & Acrivos (1975) 
for Stokes' flow past an impermeable particle; however, it will be more useful in some cases to 
consider asymptotic forms of the integral equations for k ~ 1 or k >> 1. 

Specifically, when the permeability is small with respect to a characteristic body dimension 

a (i.e. when V~ < 1), the flow past the porous particle may be considered as a perturbation on a 

the flow past an impermeable particle with the same geometry. Thus, to leading order, the 
velocity is zero on the surface, and the surface force f assumes the value t'calculated for the 
impermeable body. By substituting these expressions into [5], we find the first order correction 
for u. To evaluate the integrals appearing in [5], we construct the inner expansion for K and L 
by defining an inner variable ~" = ar and taking the limit as a -->~ while holding ~" constant. With 
this approximation, the expression for u tl~ becomes: 

U~I)(x) = ~ fk*(X)[t~jk -- nink] + O ( k ) .  [7] 

Although the analysis leading to [7] is straightforward, the details are somewhat involved, 
and the result might be obtained more easily by considering an alternative method. For flow 
through a porous body, the velocity in a thin layer near the surface is determined primarily by 
the flow outside the body. The presence of this boundary layer allows a simplification of [1] 
analogous to that achieved in traditional boundary layer theory for high speed flow. In 
particular, we find that derivatives in the plane of the surface are of lower order than 
derivatives normal to the surface and may be neglected to leading order. The modified equation 
is easily solved in conjunction with the boundary conditions to yield an expression for u ") 
identical to [7]. 

Having found the first order term for the velocity u tl), we can substitute for u in [3] to get 
the first order equation for t. This equation is identical to that for an impermeable particle 
immersed in a specified flow field which is determined by u ~1). Thus, we find that the integral 
equation for f at any order has the same form as the equation for f*. For convenience, we define 
the integral operator ~ such that: 

~,~j = f p  Lo,j(x - y)fs(y)dSy. [8] 
J s  
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If we assume that this operator has been inverted as part of the solution for f*, then the 
solution for the first order term f(~) follows immediately: 

f!')(x) =-~-[Ze- ']o{-~f~(Si,-nink)+ fseKoi,,,f~(Su-n,nt)n,,dS}. [9] 

The solution for f") thus obtained may be used to find the next term in u by substituting in [5] 
and evaluating the resulting integrals. In principle, this iteration process may be continued to 
any order. 

For the case of large permeability, it is also possible to construct an iterative solution, since 
in this limit, the solution is a perturbation on the undisturbed flow. Thus, to leading order u = u ~ 
and f =f~---o'~. n. Because the asymptotic limit as a--->0 (hence, k~oo) constitutes a regular 
perturbation, the functions K and L may be expanded in power series in a, and the appropriate 
equations solved at each order. We note that the leading order terms for K and L are Ko and 
Lo respectively. This result is obvious when we observe that Brinkman's equation reduces to 
Stokes' equation in the limit of large permeability. 

In the expansions for u and f, the odd powers of a can be shown to vanish identically, hence 
the series proceed in powers of tr 2 (or k-~). The first order corrections for u and f may be 
written: 

u l l ) ( x ) = ~  e ( u ~ -  u~)nk - r 

l fse[rir,-3r28q]-~dS 
327rk/z r jl i  , 

(1) 1 1 f i (x)= [0~97-]ii{--~u[l)(x)+ fse Koi,m(x - y)u~"(y)nmdSy }. 

[lo] 

[11] 

In some cases for which the permeability is large, it may be more efficient to employ a 
different approach. By considering Brinkman's equation as an inhomogeneous form of Stokes' 
equation, we find an integral equation for u extending over the volume of the particle: 

u,(x) = u  ;(x)-  ~- f v  e Lo,k (x - y)[ u,(y)- u~'(y)]d Vy [12] 

(see Felderhof & Deutch 1975 a). This equation is valid of course for all values of k, but it is 
most useful for large k. 

For large permeability, we set u = u* as the initial approximation and iterate using [12]. This 
method avoids the difficulties of solving integral equations and requires only the evaluation of 
integrals. This resulting expansion for u has the form: 

L ui = u i - k e L°~ k u ~ d V + e Lojk e L°~'u~[ d V d V + O(k-3)" [13] 

If the particle is held stationary in a uniform flow U ~, the velocity to first order may be 
written: 

,,,o,): v ; -  f *,,r,r+ 8rrk .Is p ( - + O(k-2)' 
[14] 

where r = x - y. 
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We note that the method of solution based on the volume integral [12] may easily be 
generalized to include problems with non-uniform permeability. 

Each of the techniques described in this section depends on numerical calculations for 
evaluating terms higher than first order. The details of individual problems will dictate whether 
a direct numerical solution would be more efficient than the methods suggested here. 

IV. R E C I P R O C A L  T H E O R E M  

In the study of motion at low Reynolds number, it is possible to obtain some useful results 
without solving the equations of motion explicitly. One of these is a reciprocal theorem which 
relates the force, torque and stress due to a particle in a specified flow field to the same 
quantities in a different flow field. The basic form of the reciprocal theorem for Stokes' flow 
about impermeable particles is: 

Lp f.u 'dS = f s  ~ f ' .udS [15] 

where u and I are the velocity and surface force in one flow field and u' and f' refer to the same 
quantities in the second flow field. From this identity, the reciprocal relationships for the force, 
torque and stress are readily obtained. (See Hinch 1972.) 

For porous particles, Reuland et al. (1978) showed that [15] applies as before and derived 
reciprocal relationships for the force and the torque on porous particles. Their derivation was 
straightforward, employing the divergence theorem to convert the surface integrals to integrals 
over the volume of the particle and substituting for V.~r from [1]. This derivation required that 
the permeability in the two particles be identical--a condition we find somewhat restrictive. In 
fact, it is a trivial modification to take the volume of integration outside the particle and show 
that [15] is independent of particle structure. Thus, the reciprocal theorem may be applied to 
particles of identical shape but different composition (e.g. one permeable and the other 
impermeable). 

V. H Y D R O D Y N A M I C  F O R C E  

In this section, we turn our attention to the calculation of the hydrodynamic force acting on 
a porous particle immersed in a specified flow field. The force may be calculated by integrating 

the force vector f over the surface or by integrating ~ - ( u - u  P) over the volume of the particle. 

The expressions for u and f required to evaluate these integrals may be obtained from the 
integral equations by one of the methods described in the previous section. Here we give the 
results for the hydrodynamic force in the asymptotic limits of large and small permeability. 

In the case of large permeability, we have two techniques available--one based on the 
surface integral equation and the other based on the volume integral equation. Using each 
technique separately, we obtain two equivalent expressions for the force. The leading terms in 
each case are: 

where u II~ is given by [10], and 

_ i t  /z 2 
F, - f v e  t . r - . r]d V, - f v e  f v e Loo(x - y)[ u~ - u e]d Vxd Vy . [17] 

If the imposed velocity field u :~= U ~ is uniform and u P=  U P with 1~ e =  0, [17] may be 
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written in the alternative form: 

P # _ tz f s e L  P (_6ijnt(x)nt(y)+ni(x)nj(y))rdSxdSy+O(k_3) } [18] 

where r = Ix-Yl and V P is the volume of the particle. 

As an example, we find that for a porous sphere of radius a, in a uniform flow U ~, these 
expressions may be evaluated to yield 

, o, (06)] F = ~ 7ra#U ~ 4 
15k 2+O ~ • 

For the case of low permeability, we observe that the iterative solution of the integral 
equation provides an expression for u to a given order, before calculating the value of f to that 
order. Since the specific form of f is not required, we employ the reciprocal theorem to find the 
total force in terms of u and the value of I at the previous order. 

Consider two stationary particles of identical geometry--one impermeable, the other 

porous--immersed in identical uniform velocity fields UL From the reciprocal theorem we 
have 

U~'F = U~" F* - fse u' f*dS, [19] 

where * denotes the relevant quantities for the impermeable particle. By substituting for u in 
[19], we find the leading terms for f as a function of the surface force f* on the impermeable 
particle. 

= U ~. F* - ~/k ( ([f,12_ If*' nlZ) dS + O(k). [20a] U ~ . F 
# Jse 

It is interesting to note that [20a] can also be written in terms of the vorticity to* on the 
surface of the impermeable particle: 

U ~. F = U ~. F* - ~ k #  Lp Ito*I:dS + O(k). [20b] 

We note that this approach is easily generalized for a non-uniform velocity field u ~. In that 
case, the reciprocal theorem is applied with the flow u ~ past the porous particle, and a uniform 
flow past the impermeable particle. 

For an impermeable sphere of radius a in a uniform flow, f* 3 tz =2 a U~ and hence from [20a], 

the force on a porous sphere is 

Figure 1 shows the variation of the force on the sphere as a function of permeability. The 
solid line is the result of the exact solution of Brinkman's equation as calculated by Felderhof 
(1975a). The dashed lines are the asymptotic results calculated here. It is seen that the 
asymptotic forms provide an excellent approximation over the entire range of permeability. 

VI. EFFECTIVE VISCOSITY 

It has been found that the bulk motion of a dilute suspension of freely suspended particles 
may be characterized by an effective viscosity (see Batchelor 1970). We proceed to determine 
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Figure 1. Hydrodynamic force on a porous sphere as a function of permeability: 
, asymptotic results. 

, exact solution; 

this viscosity for a suspension of identical porous particles. Following Batchelor, we divide the 
bulk stress into two parts--the stress associated with the fluid and the additional stress due to 
the presence of the particles, where the particle stress is given by: 

, 4 ~ f  
E = i - ~ |  [trikXink- tz(ulni + ujni)]dS, 

ij v J s e  
[21] 

and 4~ is the volume fraction occupied by the particles. 
Applying the divergence theorem over a particle volume yields the alternative expression: 

~ ,i = - ~  f vp ~ [ u, - u f ]xjd V, [22] 

where the velocity u P is now determined by the conditions of zero force and zero torque on the 
particle. In [21] and [22], the term contributing an isotropic stress has been neglected, because it 
has no effect on the motion. 

To evaluate the effective viscosity, we must calculate the particle stress using either [21] or 
[22] in conjunction with the solution of the appropriate integral equation. For particles with 
large permeability, the leading terms are most easily found from [22], thus: 

~# = ~ [-~ fv P (uT - u~)xjd V - ~  Lp x i fv~ L%[u~ - u~]d Vyd Vx ]. [23] 

At this point, it is convenient to express the contribution of the particle stress in a 
nondimensional form. We define a viscosity coefficient fl such that/~en = p.(l +/3$) where the 
effective viscosity/~en is determined by the particle stress. 

For a suspension of porous spheres of radius a in a pure straining motion e~ix ~, the particle 
(~a2 2 a  4 ) l a2 1 a 4 ( a6 ) 

stress is k 175 ~ p,&eij and the viscosity coefficient is b - 10 k 175 k 2 ~- O ~ . 

To find the particle stress in the limit of small permeability, we employ the reciprocal 
theorem in a manner analogous to that used to calculate the hydrodynamic force. Consider two 
freely suspended particles of identical geometry, one impermeable, one porous, immersed in 
identical velocity fields eiFj where e 0 is a symmetric, traceless, constant tensor. Application of 
the reciprocal theorem together with [21] yields: 

eii ~ij : eli ~ ii - - ~  P (ui - u~)f*dS. [241 
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Figure 2. Viscosity coefficient as a function of permeability for a dilute suspension of porous spheres. 
(/~cn[/~ = 1 + fl~): , exact solution; -, asymptotic results. 

To first order this gives: 

eiJ~,ij=eiJ~, : ~ ' ~ k f s  p (If*l I f*  nJ2)dS. 

For a suspension of spheres, radius a, substituting 

[25] 

f* = ~ eiixj 

into [25] gives: 

~..=l~4)ei~ 5-15 and # - 2  2 a 
q 

Figure 2 shows the dependence of the viscosity coefficient/3 on permeability for suspen- 
sions of spheres. The solid line shows the result of Felderhof (1975 b) based on the exact 
solution of Brinkman's equation, while the dashed lines show the asymptotic forms. As before, 
we see that the asymptotic forms show excellent agreement with the exact result. 
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A P P E N D I X  

Experimental verification of Brinkman's equation may be found in the work of Matsumoto 
& Suganuma (1977) who measured the settling velocity of model flocs made of steel wool. They 
calculated the settling velocity using Brinkman's equation and found excellent agreement with 
the experiments on spherical flocs with permeabilities ranging from ~/ k/ a -- 0.006 to 0.3. In 
these experiments, the permeability was determined from independent measurements and was 
not used as an empirical parameter to match the data. 

The experiments of Matsumoto and Suganuma show that Brinkman's equation accurately 
models the flow for one specific material; however, it would be premature to assume that it 
provides a reliable model for all types of permeable materials. To explore this point further, we 
consider the work of Beavers & Joseph (1967), who conducted experiments with rectilinear 
flow past blocks of porous material. As noted previously, these authors modelled the flow using 
Darcy's law with a slip condition and used the experimental data to determine the value of the 
slip constant a. For this simple rectilinear flow, Brinkman's equation with continuous boundary 
conditions is equivalent to Darcy's law with a slip constant ~ = I. For the experiments with the 
"foametal" material, this choice for a matches the data very nearly as well as the empirical 
values determined by Beavers & Joseph; however, for the "aloxite" material, Brinkman's 
equation shows poor agreement with the data. 

The failure of Brinkman's equation to accurately describe the flow in the "aloxite" material 
may be explained by comparing the structure of this material with that of the "foametal". The 
"foametal" is composed of a lattice of metal fibres which create a set of irregualrly shaped 
interlocking pores with nearly uniform porosity throughout the material, whereas the "aloxite" 
is made from grains of crystalline aluminum oxide held together with a ceramic bond. Beavers 
& Jospeh hypothesized that this granular structure led to a higher porosity near the surface, and 
hence to a greater amount of slip in the boundary region. To accurately model this material with 
Brinkman's equation, we would have to specify the permeability as a function of position. As 
there is no obvious way to do this a priori, Brinkman's equation is no better than Darcy's law 
for materials of this type. 

In conclusion, we find that we must exercise caution in using Brinkman's equation to model 
the flow in porous media. If the material is homogeneous from the surface of the body through 
the interior, Brinkman's equation will have a high chance of success; however, if the structure 
near the surface differs from that of the interior, modifications must be made in the form of 
variable permeability or discontinuous boundary conditions. 
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